
University of Bath 

Department of Mechanical Engineering 

 

 

 

Internship Report 

AI in Robotics Internship Report 

 

 

 

Elliot Routier 

239252454 

July – August 2024 

Maciej Bednarczyk – Chief of Architectural Software 

 

 

Sherpa Mobile Robotics 

Haguenau, Grand Est, France 

 

 

September 2024 

 

 

 



Acknowledgements 
First and foremost, I would like to thank Maciej Bednarczyk for being 

such a great mentor at Sherpa Mobile Robotics, he has kindly taken me 

in and tracked my progress throughout the internship. His help has been 

invaluable and my experience at Sherpa would not have been the same 

were it not for Maciej. 

I would also like to thank the Research and Development department at 

Sherpa for being so welcoming and friendly, I am truly grateful to have 

met these people and worked alongside them. The working environment 

was so positive, it made going to work in the morning so much more 

exciting than it already was. 

Finally, I would like to thank the Arthur Clement’s Fund for their financial 

support, which made it possible for me to complete this internship. 

Without this assistance, I would not have been able to pursue this 

valuable opportunity.  



 

Summary 
In today’s rapidly evolving industrial landscape, companies are under 

constant pressure to stay competitive by improving efficiency and 

automating workflows. In their search to automate and streamline 

workflows, companies look to new horizons to stand out from their 

competition and keep up with market standards. Sherpa Mobile Robotics 

focuses on facilitating such processes. Leading innovators in the sector 

of Autonomous Mobile Robots (AMRs), Sherpa Mobile Robotics plays a 

crucial role in the shift from manually focused sectors to automated 

ones. Automating industrial processes and improving operational 

efficiency, reducing the need for manual labour has become their 

objective. During my internship, I had the opportunity to participate and 

contribute in this race to innovate and constantly evolve to stand out 

from competition while keeping up with market trends. 

Involved in research aimed at innovating current solutions within Sherpa, 

I delivered weekly presentations focused on the topic of AI intending to 

raise awareness and prospect new technologies. 

During my time at Sherpa, I also had the opportunity to discover various 

fields within the company. By working with the production team, 

speaking with the sales division, collaborating with the R&D department 

and interacting with the software engineers I was able to gain a diverse 

insight into engineering as a profession. 

This internship report will serve as an insight into the different 

opportunities I have experienced at Sherpa Mobile Robotics and will also 

clarify where and how the field of Artificial Intelligence is applicable to the 

sector of AMRs. As the need to innovate is extremely important, 

researching and developing new technologies becomes a fundamental 

factor to the success of Sherpa Mobile Robotics.   
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Introduction to Sherpa 
Sherpa Mobile Robotics (SMR) is a robotics company founded in 2020. 

Based in Haguenau, France, its CEO, Stephane Fauth, envisioned a 

solution that would complement SMR’s current sister enterprise – 

NORCAN. 

NORCAN, founded in 1987, is a leader in France and among the leaders 

in Europe in the field of tailor-made, mechanically assembled solutions 

based on aluminium profiles. When Stephane Fauth took over NORCAN 

back in 2014 he encountered some of the challenges that industrial 

manufacturers are faced with day to day. More specifically, following an 

increase in demand for NORCAN’s maintenance chariot, the CEO 

imagined a motorised version of the chariot. From this idea, Sherpa 

Mobile Robotics was born. 

To address the growing need for automation and efficiency in the setting 

of industrial manufacturing, this strategic move would allow industrial 

manufacturers to enhance their productivity, reduce manual labour and 

answer for a gap in the market. Beyond meeting these criteria, Stephane 

also envisioned NORCAN to be a primary integrator of the Sherpa range 

of robots. 

Today, the field has become highly competitive with companies like 

Boston Dynamics, Geek+ and Mobile Industrial Robots at the forefront of 

SMR’s competition. However, Sherpa still manages to stand out in a 

market as competitive as that of industrial AMR’s. With several unique 

robots that answer to highly specific scenarios and the “follow-me” 

function that remains the intellectual property of Sherpa Mobile Robotics, 

the company maintains a strong foothold in the market. The upcoming 

section will address these stand-out features. 

 



Sherpa-D 
The Sherpa-D is SMR’s latest robot release. 

Featuring a singular fork designed to transport 

dollies, wheeled pedestals, stacks of bins and 

rolling trays, its maximum payload amounts to 

a total of 250 kg with a maximum height of 1.2 

metres. Weighing 137 kg, this AMR is easily 

integrated in solutions for moving stacks of 

bins from a point A to a point B. 

 

Sherpa-B 
This fully autonomous AMR, specially 

designed to improve order 

preparation processes, eliminates 

unnecessary manual interventions. 

Equipped with a LiDAR and flexible 

add-ons (possible through NORCAN) 

this 75kg robot can lift weights of up 

to 200 kg at speeds of 7 km/h. The 

Sherpa-B’s main use-case is for any 

picking and handling actions thanks 

to its top conveyor that can be 

adjusted depending on the client’s requirements.  

 

Sherpa-P 
The Sherpa-P is designed to transport 

pallets and crates of up to 1 200 kg. 

Its purpose – interconnecting 

production zones with warehouses. 

This robot is customizable to meet 

client requirements on demand. Its 

base can be equipped with multiple 

extensions to adapt it to a specific 

environment. Weighing just 250 kg, the use case of the Sherpa-P has 

been thwarted due to the arrival of the new Sherpa-F… 

 



Sherpa-F 
Similar to Sherpa-P, this AMR is 

designed to transport pallets and crates. 

However, it does not require specific 

infrastructure to function, a requirement 

that has led Sherpa-P to be fully 

replaced by the Sherpa-F. weighing in at 

over 200 kg this robot has a weight 

capacity of 1200 kg. With no 

environment modifications required, its 

reliability is also based on its ability to 

recognise and pick up pallets even 

when they are not aligned. 

 

Follow-Me Function 
The “Follow-Me” feature is Sherpa Mobile Robotics’ standout innovation 

and remains exclusively their intellectual property. The feature has 

provided Sherpa with a significant advantage in the market proving to be 

more than just a unique perk but also a factor influencing clients to opt 

for a Sherpa robot. 

Fundamentally, the Follow-Me function allows a robot to automatically 

track and follow the nearest individual without the requirement of 

programming any missions. Minimising downtime and eliminating the 

need to program specific missions this makes the robot more intuitive to 

use and streamlines operations. Whether it’s quickly displacing a pallet 

from a point A to a point B under time constraints or helping a robot 

adapt to a new warehouse, its applications are vast. 

This hands-free solution offers a face paced, dynamic and reliable 

approach. Allowing businesses to maximise efficiency and adapt to 

quickly changing scenarios, this simple yet versatile solution has made 

the “Follow-Me” feature a powerful selling point for Sherpa Mobile 

Robotics. 

  



Learning Objectives 
Offering insights I had not expected, this experience was truly eye-

opening, allowing me to gain a real-world understanding of how a 

company operates and what it means to work as an engineer abroad. 

Before starting, I knew my role at Sherpa Mobile Robotics would involve 

producing weekly reports on the current state and prospects of AI in the 

world of robotics. I was guided by Maciej Bednarczyk, chief of 

architectural software at Sherpa, who mentored me throughout the 

internship, keeping track of my progress and the work that I was tasked 

with. 

The primary task – producing weekly reports on the current state and 

prospects of AI in the field of robotics – allowed me to delve deep into 

the latest technologies in the field of AI and contribute to raising 

awareness within the company about AI’s potential in the sector. But the 

internship wasn’t just about the research, I was also presented with the 

valuable opportunity to experience the balance between personal and 

work life. Learning firsthand about the dynamics of a company provided 

a holistic experience contributing to my growth from a professional, but 

also a personal point of view. 

 

Discovering Sherpa 
Before discussing the work that unfolded during my internship at Sherpa, 

I was encouraged, upon arrival, to immerse myself within the company 

by engaging with as many teams and members as possible. This step 

was crucial for me to understand the dynamics of the company and 

integrate as the summer intern. During my first few days, I interacted 

with a variety of departments including the sales team, R&D engineers, 

commercial division, human resources and software engineers. This 

exposure to the company was essential to grasp the company’s 

atmosphere and to settle in comfortably.  

Towards the end of this introductory period, I had the opportunity to meet 

the production team, responsible for assembling the robots. They were 

very welcoming and friendly; not only did they guide me through the 

assembly process, but they entrusted me with assembling a Sherpa-D 

myself. Thrilled at the challenge, I was given flexibility by my mentor, 



Maciej Bednarczyk, allowing me to focus on this project before engaging 

in my weekly AI reports in the field of robotics. 

Working alongside Louis, Adam, Thomas and Romain from the 

production team was a highly enjoyable experienced. Patient and 

pedagogical, they taught me the intricacies of robot assembly and 

shared valuable tips and tricks. I spent one week assembling the 

mechanical aspect of the robot and another week setting up the 

electrical panel. Despite my limited prior knowledge in both areas, I 

learned a great deal and thoroughly enjoyed the hands-on experience 

that assembling a robot has to offer. 

Overall, my time with the production team was both enlightening and 

fulfilling. Creating a complex piece of engineering and engaging with a 

cheerful and supportive group of people made this experience a 

highlight of my internship at Sherpa Mobile Robotics. 

 

  

  



The current state and prospects of AI in the field of 

robotics 
After spending the first couple of weeks exploring different departments 

within the company and working with the production team to assemble a 

robot from scratch, I was now ready to begin the focus of my internship – 

weekly reports on the current state and prospects of AI in the field of 

robotics.  

Having discussed with my mentor, Maciej Bednarczyk, it was agreed 

that instead of producing a traditional, weekly, written report which might 

not directly be useful for Sherpa, I would deliver weekly presentations to 

the team at SMR. These presentations would be open to anyone curious 

to learn more about AI, creating an open source of knowledge for 

anyone to access in engaging and active presentations. As such, these 

talks would be aimed at raising awareness within the company on the 

topic of AI, ensuring everyone had a solid understanding of its current 

state and eventually exploring how this rapidly evolving technology could 

be practically integrated into Sherpa’s operations. 

The following is a structured overview of the weekly work I completed at 

Sherpa, excluding the first couple of weeks and the week of August 12 – 

August 15:  

Elliot Routier 
Intern at Sherpa Mobile Robotics 
Internship Period: July 1 – August 30 
Location: Haguenau, France 

 

Week 3 (July 15 – July 19) 

• Main Topic: Introduction to AI 

• Goal: Familiarise with basic AI concepts and prepare a presentation. 

• Work Done: Researched fundamental AI concepts such as machine learning and 
deep learning. Created and delivered a presentation on the introduction to AI. 

 

Week 4 (July 22 – July 26) 

• Main Topic: AI Learning Processes 

• Goal: Understand different types of AI learning focusing on backpropagation. 



• Work Done: Researched AI learning methods in particular learning about 
backpropagation. Prepared and delivered a presentation on AI learning processes. 

 

Week 5 (July 29 – August 2) 

• Main Topic: Computer Vision 

• Goal: Explore computer vision and its applications in robotics. 

• Work Done: Studied image recognition and machine vision systems. Created and 
delivered a presentation on computer vision in robotics. 

 

Week 6 (August 5 – August 9) 

• Main Topic: Natural Language Processing (NLP) 

• Goal: Investigate NLP applications in robotics and address the topic of prompt 
engineering. 

• Work Done: Researched NLP technologies. Delivered a presentation on NLP and 
prompt engineering in robotics. 

 

Week 8 (August 19 – August 23) 

• Main Topic: AI Solutions in Robotics 

• Goal: Prospect various AI solutions for robotics. 

• Work Done: Researched AI-driven solutions and case studies in industrial robotics. 
Presented findings on AI applications in robotics. 

 

Week 9 (August 26 – August 30) 

• Main Topic: Final Recap 

• Goal: Summarise all previous topics in a final presentation. 

• Work Done: Consolidated all topics covered in the internship. Delivered a final 
recap presentation to the company. 

 

Key Presentations: 

• Week 1 (July 15 – July 19): Introduction to AI. 

• Week 2 (July 22 – July 26): AI Learning Processes. 

• Week 3 (July 29 – August 2): Computer Vision. 

• Week 4 (August 5 – August 9): Natural Language Processing (NLP). 



• Week 5 (August 19 – August 23): AI Solutions in Robotics. 

• Week 6 (August 26 – August 30): Final Recap Presentation. 

What follows in this technical internship report will focus on detailing the 

key findings during my time at Sherpa Mobile Robotics. Working my way 

through each week, I will provide technical details on the topics of AI, its 

learning processes, Computer Vision, Natural Language Processing and 

AI applications in robotics. Since the last week was focused on providing 

a summary of the previous weeks, I will not provide a breakdown for this 

last week. 

 

An Introduction to AI 

Artificial intelligence refers to the development of computer algorithms to 

perform tasks that would typically require human intelligence. These 

tasks include reasoning, learning, problem solving, understanding 

natural language, recognising patterns and making decisions. AI 

systems can process huge amounts of data, and its use case is 

applicable to various sectors ranging from mobile robotics to healthcare. 

Today, the term artificial intelligence can be misleading and therefore it is 

important to understand what that means on a more basic level. 

 

Data 

Essentially, Artificial Intelligence refers to the ability of a machine to think 

on its own. In this introduction of AI and for the rest of the report I will be 

focusing mainly on a branch of AI known as Machine Learning. Machine 

Learning is a subset of AI that allows systems to learn automatically from 

data, hence the name “Machine Learning”. Acquiring this data is the 

challenging aspect of Machine Learning – the quality of the AI model 

depends on the quality of the data. Think of it like feeding a child – if the 

child is to grow strong and healthy, he will need the best nutrition 

available. Similarly, a Machine Learning model will only perform well if it 

is fed with reliable, well-structured data. 

  



 

Another challenging aspect of machine learning – 

classifying and labelling the data gathered. Once 

properly labelled, this data becomes the foundation 

for training an AI model enabling it to learn improve 

and eventually, think. Ever had Google ask you to 

identify objects, like bicycles from a set of images? 

That’s Google collecting and classifying data which 

is then used to train their machine learning models 

like Gemini for instance. 

To put in perspective the shear volume of data that an AI can consume, 

imagine reading through a collection of 500 000 books. Assuming a 

reading speed of 50-60 pages per hour and that each book is 300 pages 

long, it would take an average human about 1 000 years to finish these 

500 000 books whereas an AI could read through this information in the 

span of minutes. 

 

Neural Networks 

The very foundation of a machine 

learning system relies on a neural 

network. A neural network 

consists of two principal 

components: 

• Neurons 

• Neural Links 

 

A neural network is designed to process input data and produce an 

output, which can be used for making predictions or providing answers. 

Here is a breakdown of how it works: 

1. Neural Links: Information flows through the network from the 

input to the output layer. This data is propagated through the 

network by neural links also known as weights or coefficients, 

which determine the importance of the information that is being 

transferred between neurons. 



2. Neurons: each neuron receives information from the neural links, 

processes it using an activation function, and passes it to the next 

layer of neurons for this information to be processed again. 

3. Network Structure: 

▪ Input Layer: the raw data enters the network 

▪ Hidden Layers: layers between the input and output 

layer responsible for recognising patterns, hierarchal 

learning, extracting features and introducing non-

linearity to a model. 

▪ Output Layer: final prediction based on the processed 

information 

A Neural network processes data through its interconnected layers of 

neurons where each layer contributes to pattern recognition and feature 

extraction. The propagation of this information ultimately leads to the 

generation of an output. The structure of a neural network is what allows 

a machine learning to process data as fast as it does. 

 

The Learning Process 

The learning process is arguably one of the most technical aspects of 

machine learning. While it involves many complex details, especially in 

the underlying mathematics, I will focus on the key steps to give a clear 

overview without diving into every detail. 

This phase introduces several concepts that have not yet been 

mentioned. They are not necessary to understand the functioning of 

neural networks, but they are crucial in understanding how they learn. 

  



 

This diagram outlines the different steps involved in this process. My aim 

is to guide you along this diagram, step by step, to provide a more 

holistic understanding. During my presentation to the team this diagram 

was also used as visual support to guide my audience through the 

process. 

 

Activation Functions 

Having touched very briefly on activation functions when introducing the 

concept of neural networks, I will now expand on this topic. Activation 

functions process the data passed through the neural network to 

generate an output from this information. Essentially the function applies 

a weighted sum to the input data and its respective weights (or 

coefficients as I like to call them because they determine the importance 

of the propagated information). 

 



From the diagram above, the blue circles labelled h1, h2, h3, h4 and h5 

represent neurons from a hidden layer. Each neuron contains a value 

(denoted by the letter “v”) ranging from 1 to 0 which is transmitted along 

a neural link. Each neural link holds a weight (denoted by the letter “w”). 

A weighted sum of the neurons, and their respective weight, produces 

an output – in this case -0.53. This activation function is applied to every 

single neuron in a neural network and allows for the processing and 

propagation of information within this system. 

  

Peeking inside a single neuron, we see how the input data is averaged 

using a weighted sum of values and weights to produce an output that is 

transmitted to the next layer of neurons. 

The final step involved in activation functions is the activation itself. 

Many activations may be used when creating a neural network, to list a 

few: ReLU, Sigmoid, Leaky ReLU, Tanh (hyperbolic tangent) and 

Softamx. Each have their use case depending on the outcome required. 

For the sake of simplicity, I will only explain the activation process of 

ReLU. The activation aspect of activation functions allows the weighted 

sum to be propagated through to the next layer (or not). The following 

steps describe how ReLU translates the weighted sum as an output: 

• If the weighted sum is x > 0, then the output is x 

• If the weighted sum is x = 0, then the output is 0 

• If the weighted sum is x < 0, then the output is 0 



The ReLU function allows the elimination of all negative, non-zero 

entries into the neural network such that only relevant information is 

processed by the network. The ReLU function contains a flaw which can 

be resolved by using different activation functions, such as the ones 

mentioned earlier. 

 

Bias 
You may have noticed in the diagrams above, additional neurons 

labelled “bias”. The bias helps adjust the weighted sum to influence the 

input for the next neuron layer. Unlike other neurons, the bias isn’t linked 

to individual neurons but applies to the entire layer. This added 

parameter increases the complexity of neural networks, helping fine-tune 

the outputs. 

 

Loss Functions 

Referring to the learning process diagram from mentioned earlier, 

after a prediction or an output has been generated, a loss function 

compares the values generated by the neural network with the expected 

or true value. This comparison results in a loss score, which indicate 

how the AI model’s predictions align with expected outcomes. The loss 

score is later used in the learning process to guide the fine-tuning of 

parameters to improve its performance. 

  



Similar to activation functions, there are different types of loss functions, 

and each have their ups and downs. For demonstration purposes we will 

look at two common loss functions: 

• Mean Squared Error (MSE) 

• Categorical Cross Entropy (CCE) 

The Mean Square Error is typically used in regression problems. It 

calculates the average squared difference between predicted and true 

values. The smaller the score, the better the model is performing. 

The Categorical Cross Entropy is used for classification tasks. It 

measures the difference between the predicted probability distribution 

and actual class distribution. This score is calculating using probabilities 

and logarithmic functions, making it more complex than the MSE 

method. 

Let’s have a look at some examples. 

 

In this example, a sine wave is generated. The sine wave is represented 

by an oscillating blue line that corresponds to the values we expected 

our model to predict. The predicted values of the model are shown as 

red dots following the trend of the sine wave. While the predicted values 

are close to the expected values, they do not match exactly. On the 

following page, the Mean Squared Error is calculated using the 

difference of two squares. 

  



By calculating the difference of two squares, an average loss score is 

determined. In this case, the Mean Squared Error is 0.0090. The next 

graph uses Categorical Cross Entropy for classification purposes. 

 

Imagine an AI model that predicts whether an image is that of an apple 

or not. The dark orange bars from represent whether the image of an 

apple was provided to the machine or not and the light orange bars 

show the machine’s predicted probability of the image being an apple. 

The following graph shows the loss score calculated using Categorical 



Cross Entropy for the apple image recognition.

 

Essentially, the CCE score is calculated using probabilities and 

logarithmic functions to assess the accuracy of the model’s predictions. 

 

Gradient and Backpropagation 

Until now we have investigated neural networks use activation and loss 

functions. However, we haven’t seen anything on the learning aspect of 

machine learning. This is where gradients and backpropagations come 

into play. These processes work hand in hand to help the model adjust 

its parameters (weights and biases) to improve performance. 

After the loss score has been calculated, the model’s output is 

backpropagated through the network, from the output to the input. 

Backpropagation determines how each neural link and bias contribute to 

the loss score calculated. 

Once the contribution to the loss score for each parameter has been 

determined, a gradient must be calculated. A gradient indicates the 

direction and magnitude of changes required to reduce the loss score. 

To illustrate, imagine a hiker, climbing down a mountain when it is dark. 

To reach the bottom of the mountain, the hiker carefully places one foot 

in front of the other making sure that each step taken leads downhill. 

Similarly, in machine learning, gradients guide the parameters (weights 

and biases) to reduce the loss score.  



 

We can think of this gradient descent as 3-dimensional space where its 

y-axis represents the loss score, and the x and z-axes represent the 

parameters of the neural network which are weight and bias. A neural 

network could consist of millions of these parameters, so it is impossible 

to visualise or even understand how this gradient descent occurs. 

The gradient is calculated using a vector of partial differential equations 

with respect to each parameter (weights and biases). These gradients 

are applied during backpropagation where the information is reversed 

through the neural network. 

Following the gradient calculation from the backpropagation of 

information, weights and biases are updated to improve the model. This 

is a cyclical process and will iterate until the loss score has reached a 

minimum or until the model has reached a suitable level of performance. 

To summarise the learning process of machine learning, we can refer to 

our original diagram. 



 

The steps involved include: 

• Forward propagation – the input data passes through the network, 

producing an output 

• Loss function – the output is compared to the expected value and 

a loss score is calculated to measure the model’s performance  

• Backpropagation – the output is sent back through the network to 

measure each parameters contribution to the loss score 

• Gradient – they are calculated to minimise the model’s loss score 

by optimising weights and biases 

 

Computer Vision 

Having covered some of the theory behind Artificial Intelligence, and 

more specifically behind machine learning, we can start looking at some 

of the key AI solutions in the world of robotics. In this section of the 

report, I will focus on a technology that is extremely popular and utilised 

in the world of AI, computer vision. Computer vision allows machines to 

see. But what does this mean?  

Today, we could program a computer to recognise a dog from a cat by 

teaching it key feline features such as whiskers, a long tail, pointy ears… 

and so on. However, identifying the difference between a cat and a 

jaguar is far more difficult, which is why computer vision is highly 

valuable for recognition and classification tasks. 



In this section we will look at all the processes involved in computer 

vision: 

• Data 

• Convolution 

• Pooling 

• Stacking 

• Flattening 

 

Data 

As mentioned at the start of this report, data remains a long and tedious 

process of machine learning. Acquiring clean and structured data is 

fundamental to obtain the best quality model. Not only selecting the data 

but also labelling it plays a key role in the process. The same applies for 

computer vision, the quality of the data is directly proportional to the 

quality of the model. 

Beyond the acquisition of quality data and thorough labelling, an image 

must be converted from a coloured one to a grayscale one – in other 

words, a grayscale conversion. 

This is the image of my cat undergoing a 

grayscale conversion. A grayscale conversion 

allows for the reduction of information – it makes 

it easier to process the information of an RGB 

image (coloured). An RGB image contains 

pigments of Green, Red and Blue in every pixel 

of an image. A grayscale image contains only an 

intensity of light for each pixel. As such, this 

conversion allows for the initial input data to be 

reduced by a threefold, making it a lot easier and 

faster for the network to process. 

  



 

Convolution 

After converting an image to grayscale, applying a convolution layer can 

further reduce the input data we provide to a neural network and help 

extract key image features. A convolution layer is a filter, applied to a 

grayscale image, allowing the neural network to extract key features 

from the image.  

This filter is in the format of a 3x3 matrix of pixels, known as a kernel. 

The kernel scans the image, performing a weighted sum between the 

kernel values and the pixel values. To illustrate this process, the 

following image shows a kernel applying a weighted sum to 

corresponding pixels of an image: 

 

 

From this 8x8 pixel image, the top left portion consisting of 3x3 pixels 

has been translated to a single pixel by use of this weighted sum. The 

kernel then moves across the image, applying the filter until the entire 

image is processed. The filtered result is known as a feature map. 

Different kernels produce different feature maps. The kernel values 

depend on the desired extracted features of an image such as edges, 

contours or brightness. 



Pooling 

Pooling further reduces the amount of data processed by the neural 

network while preserving essential features from the feature maps. This 

step makes the model more efficient by reducing unnecessary 

information while maintaining key characteristics of the image. 

There are two types of pooling: 

• Max Pooling 

• Average Pooling 

Like convolution filters, pooling involves scanning an RxC matrix to an 

image and either perform an average of the pixels within this matrix 

(average pooling), or by selecting the most significant pixel within this 

region (max pooling). 

Max Pooling: imagine doing a helicopter tour over New York. The 

buildings that stand out are the tallest and most prominent ones. Like the 

skyline of a mega city, max pooling selects the most dominant pixels 

within a select region. 

Average Pooling: an averaging operation ensures that each pixel is 

accounted for in the process. 

 

Stacking 

Applying convolution layers to the initial image is sometimes not 

sufficient to capture the important features of an image. To handle more 

complex feature extraction, multiple convolution layers can be stacked 

on top of each other. In doing so, specific characteristics may be 

extracted from images that have been already filtered. Here is an 

example of a grayscale image of a cat whose contour is being extracted:

 



The feature map is now filtered to extract more complex features of this 

image:

 

 

Through the process of stacking, we can obtain very useful insights into 

the image with very small amounts of data. 

 

Flattening 

Assuming we have applied multiple convolution layers to the image of 

our cat, such that we obtain the following feature maps: 

 



 

 

The top left feature map allows to accentuate 3D aspects of the image, 

the top right image is the contour filter, the bottom left image allows to 

blur intensity contrasts, while the last picture aims to highlight bright 

features. 

The flattening process converts the data format such that it can be 

managed by the neural network. 

Currently the data exists as a 3D vector known as a tensor. These 3 

vectors include height (vertical pixels of a feature map), width (horizontal 

pixels of a feature map) and the number of feature maps (4 in this case). 

Flattening will ensure that this data is translated to a 1D vector and not a 

3D one. 

The flattening process is very simple and consists of multiplying the 

vertical pixels with the horizontal ones and multiplying them by the 

number of feature maps. 

The image of our cat is a 2,880 x 1,800 picture (excluding the pooling, 

grayscaling and filtering that reduce the number of pixels an image 

contains) and we have obtained 4 of these feature maps. Multiplying 

these out we acquire a total of 20,736,000 individual pixels that will be 

used as input data to the neural network. 

Once the data is in the correct 1D vector format, that the data size has 

been reduced and that we have obtained our feature maps, the 

information can now be processed by the neural network. 

  



Natural Language Processing – NLP 

Natural Language Processing, or NLP, is a branch of Artificial 

Intelligence that allows machines to interpret, process and respond to 

human language. In the world of robotics, NLPs hold true potential to 

understand and execute tasks based on natural language commands, 

creating a more intuitive and user-friendly interface for customers using 

AMRs. This next section explores how NLPs function, what are its 

applications in the world of robotics and some of the challenges it faces 

in the industry. 

The following is a comprehensive list of steps involved in NLP: 

• Speech Recognition 

• Language Parsing 

• Semantic Understanding 

• Command Execution 

 

Speech Recognition 

Although not a necessary step as some natural language can be written 

and not spoken, most NLP equipped robots use speech recognition 

technologies like Google Speech-To-Text or Microsoft Azure Speech 

Services. These technologies use a deep learning models known as 

Recurrent Neural Networks (RNNs) or Transformers to process audio 

data in real time by analysing frequencies and amplitudes of sound 

waves. These deep learning models can account for accents, variations 

in tone, background noise and even speaker emotions. 

 

Language Parsing 

Once the speech has been converted to text, language parsing breaks 

the text down into a structured layout. There are two types of 

dependency parsing that order the text into a structured layout. These 

are: 

• Syntactic Parsing 

• Dependency Parsing 

Syntactic parsing analyses grammatical structures whereas dependency 

parsing analyses relations between words in a sentence. 



Syntactic parsing identifies the role each word plays in a sentence. For 

example, in “Pick up the box”, the word “Pick” is identified as the verb, 

and the word “box” is identified as the object of the verb. As such, 

syntactic parsing is responsible for determining the action and target of a 

mission. Dependency parsing creates a dependency tree where each 

word is linked to others based on how they depend on each other for 

meaning. For example, in “Put the red book on that table”, the 

dependency tree would relate “red” to “book” and map “on that table” to 

“Put” to indicate where the action should take place. 

 

Semantic Understanding 

Once the structure of grammar and dependency is understood, the robot 

needs to comprehend the meaning behind the words. Semantic 

understanding enables robots to understand what is being asked of 

them beyond the literal meaning of words. This step involves Named 

Entity Recognition (NER), Semantic Role Labelling (SRL) and Word 

Sense Disambiguation (WSD). 

• NER – allows AMRs to identify specific names, locations or 

objects. For instance, in “Bring me the book from the shelf”, the 

robot associates the “book” being on the “shelf” 

• SRL – assigns roles to different parts of a sentence to understand 

relationships between entities and actions. For example, in “John 

gave Mary the book”, Semantic Role Labelling identifies “John” as 

the giver and “Mary” as the receiver 

• WSD – use of contextual cues to eliminate ambiguity in human 

language. For example, a “bank” can mean the side of a river or a 

financial institution. 

 

Command Execution 

The command execution phase of NLPs involves translating the 

meaning of the command into a physical action using its actuators. The 

process is highly dependant on motion planning, object manipulation 

and multi-step command algorithms. 

• Motion Planning – for mobile robots, motion planning involves 

determining the most efficient path from one point to another while 

avoiding obstacles. 



• Object Manipulation – for robots equipped with arms for example, 

they must understand how to handle objects. 

• Multi-Step Commands – robots need to perform multiple tasks 

sometimes such as “got to aisle A42”, then “pick up pallet 445” and 

“drop it off in zone 5”. These instructions involve task 

decomposition before being able to execute. 

Overall, NLP allows for the translation of natural language from an 

unstructured to a structured environment. In a more realistic example, if 

we ask a robot “Add eggs and milk to my shopping list”, NLP algorithms 

will deconstruct this phrase and rearrange it into the following structured 

architecture “<Shopping list><item>eggs</><item>milk</></>” by using 

methods such as language parsing and semantic understanding. 

NLP in robotics is a sophisticated and multi-layered process that 

combines speech recognition, language parsing, semantic 

understanding, and command execution, all enhanced by continuous 

learning from interactions. This integration allows robots to engage in 

more natural, intuitive, and human-like interactions, improving their 

ability to understand and act on verbal commands across various 

industries and applications. 

 

Generative AI 

During my internship, the research I led on artificial intelligence was 

strongly supported by generative AI. Most of the work was carried out 

using these tools, with occasional adjustments made by me. After 

discussing with my mentor, we decided that I would evaluate various 

GenAI platforms. This approach allowed me to give detailed feedback on 

each tool's performance and provide insights on which one was most 

effective. I evaluated them based on key criteria: natural language 

processing (NLP), programming capabilities, operability, user 

experience, and creativity. 

To get a thorough understanding of each tool, I spent roughly a week 

working exclusively with each AI platform, examining its strengths and 

limitations. In total, I assessed four different GenAIs: 

• ChatGPT 

• Microsoft Copilot 



• Gemini 

• Claude 3.5 

 

ChatGPT 

OpenAI’s ChatGPT is currently the leader in the generative AI space, 

and for good reason. It was by far my favourite tool to work with as it 

excelled in all the areas I evaluated: 

• NLP: ChatGPT demonstrates an exceptional ability to 

understand and generate natural language, though it 

sometimes leans toward overly formal and verbose responses. 

• Programming: It’s highly versatile, often assisting with code 

generation and debugging. I used it extensively in my first-year 

projects, although it required multiple iterations to reach the 

desired result. 

• Operability: It’s incredibly reliable—I've never faced server 

downtime. While I only used the free version, which met all my 

needs, the paid version at $20 per month is available for 

enhanced features. 

• User Experience: Very straightforward interface with a useful 

chat history and memory features that store information across 

conversations for future use. 

• Creativity: ChatGPT is remarkably creative, consistently offering 

original ideas and solutions. 

 

Microsoft Copilot 

• NLP: Copilot’s natural language understanding is somewhat 

basic and occasionally struggles with nuanced input. 

• Programming: Its programming capabilities are underwhelming, 

and I wouldn’t rely on it for serious coding tasks. 

• Operability: This is where Copilot shines. Its seamless 

integration with the Microsoft environment makes it extremely 

accessible. Similar to Gemini’s connection with Google, this is a 

standout feature. 



• User Experience: Simple and intuitive, with easy access to 

other Microsoft apps. However, the lack of conversation history 

is a drawback compared to ChatGPT. 

• Creativity: Copilot’s creative abilities are bolstered by its access 

to DALL·E 3, providing up to 15 free image generations per day. 

• Additional Features: The real game-changer is Copilot’s ability 

to fetch live data from the web, eliminating the need for external 

searches. This feature is absent in ChatGPT, Claude 3.5, and 

Gemini, making Copilot unique in this aspect. 

 

Gemini 

• NLP: Better than Copilot in language processing, but still not on 

par with ChatGPT. 

• Programming: Its programming abilities are solid and 

surprisingly complementary with ChatGPT. Together, they often 

solve problems the other struggles with. 

• Operability: Accessible and integrated into the Google 

ecosystem, though not as tightly as Copilot with Microsoft. 

• User Experience: Simple to use, though it doesn’t offer much 

beyond the basics. 

• Creativity: It gets the job done, being reasonably creative in 

comparison to other GenAIs. 

In summary, while Gemini is a high-performing AI, it lacks a standout 

feature. It feels like a less robust version of ChatGPT, offering nothing 

particularly unique. Unlike Copilot, which excels with live web access, 

Gemini doesn’t provide anything groundbreaking. 

 

Claude 3.5 

• NLP: Claude 3.5 surpasses ChatGPT in natural language 

generation, producing answers that feel more conversational 

and human-like. 

• Programming: Claude excels in coding, outperforming both 

ChatGPT and Gemini. I especially enjoyed using it to generate 

games and animations, which were valuable during my weekly 

presentations. 



• Operability: Unfortunately, this is its weakest point. The servers 

are often overloaded, making it difficult to access. Initially, when 

it launched in mid-2024, I had frequent access, but the current 

free version is limited to only five messages per day. I didn’t get 

the chance to try the paid version, but I suspect it might offer 

better server access. 

• User Experience: The layout and interface are user-friendly, 

though the limited usage is frustrating. 

• Creativity: Claude 3.5 is one of the most creative AI tools I’ve 

used, regularly offering insightful and imaginative ideas. 

Over the course of my internship, I became deeply familiar with these 

generative AI tools and continue to use them today. Each has its 

strengths, and I now employ them for different tasks: Copilot for web-

based research, Claude when it’s available, ChatGPT as a fallback when 

Claude is inaccessible, and Gemini, though rarely, as I wait to see if 

Google enhances its capabilities with live web access. I strongly 

recommend leveraging this comparison to make the most out of these 

tools in your own projects. 

 

Fleet Management Platforms 

The final project that I led at Sherpa was a benchmarking between 2 

platforms that focused on robot fleet management. At Sherpa, the 

current fleet management we use is called InUse. InUse is an IoT that 

allows for the design of a web app where data can be retrieved to 

visualise information from your fleet of robots. 

During some of my research in the beginning of my internship, I had 

come across another fleet management platform named WAKU that 

implemented AI solutions. When presenting about WAKU to some team 

members from SMR, they pointed out to me that this was very similar to 

InUse and that it could be a great idea for me to carry out an evaluation 

to compare these 2 platforms. 

And so, I met the CEO of WAKU and got in touch with people from 

Sherpa that take care of the InUse contract to get a better idea of both 

platforms. This following section will aim to highlight the pros and cons of 

each platform, why we should use one over the other and more 

importantly what are their differences. 



InUse 
InUse is a French company based in Paris that specialises in the 

Internet of Things (IoT). IoT refers to a network of physical devices 

embedded with sensors and software, enabling them to collect and 

exchange data over the internet. InUse itself isn’t specifically a fleet 

management platform but rather provides the tools necessary to build 

one. This gives Sherpa, a high degree of flexibility in customising the 

platform according to our needs. 

The web app that Sherpa developed with InUse allows us to access Key 

Performance Indicators (KPIs) that are crucial for meeting Service Level 

Agreements (SLA) and identifying potential robot errors. It also provides 

real-time insights into robot operations, such as mission durations and 

daily task details. 

While InUse is primarily used for data visualisation in our current setup, 

it’s capable of much more. After speaking with Laurent Couillard, the 

CEO of InUse, I learned that the platform could integrate third-party 

services, manage robot maintenance, handle ticketing systems, oversee 

inventory and spare parts, plan tasks, and even include AI-driven 

chatbots. This flexibility highlights the potential of InUse beyond just 

visualising KPIs. 

 

WAKU 
WAKU is a German company founded in 2019, located near Sherpa in 

the Alsace region. The founders, Leo KaBner, Victor Splittgerber, 

Alexander Bresk, Florian Purchess, and Sander Nijssen created WAKU 

Care, a software solution designed for managing the maintenance and 

after-sales support of Autonomous Mobile Robots (AMRs). The main 

goal of WAKU Care is to optimize robot operations and help clients 

achieve a high return on investment (ROI) by improving how mobile 

robots are integrated into logistics processes. 

Unlike InUse, WAKU provides a more focused, pre-built platform 

specifically tailored for AMR maintenance and data retrieval. While the 

app is very efficient and user-friendly, it lacks the customisability of 

InUse. Every client gets the same interface with only minor differences 

based on contract details. This uniformity simplifies things but may not 

suit companies with highly specific or evolving needs. 



Comparison 
The web app Sherpa developed with InUse is functional but still in a 

rough state, requiring further time and investment to reach its full 

potential. In contrast, WAKU’s app is simpler, more intuitive, and highly 

polished because it's designed specifically for the AMR industry. 

However, WAKU sacrifices customisability, something InUse offers in 

abundance. 

When comparing the AI capabilities of these platforms, they are both on 

similar paths. Both InUse and WAKU are in the beta phase of integrating 

AI-driven chatbots designed to handle ticketing issues. These chatbots 

will draw from historical data and internal documentation to resolve 

common problems without needing technician intervention, saving time 

for more complex tasks. 

In terms of pricing, InUse is the more expensive option, but this reflects 

the broader range of services it offers. Over a 10-year period and for the 

connection of 1,500 robots, InUse costs around €300,000, while WAKU’s 

subscription is priced at €156,000. This pricing difference highlights the 

trade-off between flexibility and cost. 

 

Conclusion 
In summary, comparing InUse and WAKU is challenging because they 

cater to different aspects of fleet management. InUse offers a highly 

customizable platform focused on IoT and data visualization, allowing 

companies like Sherpa to build a system tailored to their specific needs. 

On the other hand, WAKU delivers a straightforward, ready-to-use 

platform designed for AMR maintenance. It’s cheaper, more user-

friendly, and highly specialised but lacks the flexibility of InUse. 

Switching from InUse to WAKU would involve a period of adaptation, as 

Sherpa’s team would need to get familiar with a new system. However, 

WAKU is specifically designed for AMR manufacturers, which could offer 

advantages in streamlining operations. While InUse excels in data 

visualisation and customisation, WAKU offers a more specialised and 

affordable solution for Sherpa’s AMR fleet management and 

maintenance needs. 

  



Final Thoughts 

As an engineering student, my internship at Sherpa Mobile Robotics has 

been an eye-opening experience, bridging the gap between theoretical 

knowledge and practical application in the field of Autonomous Mobile 

Robots (AMRs). 

The hands-on experience of assembling a Sherpa-D robot provided 

invaluable insights into mechanical and electrical assembling of AMRs. 

This practical exposure, combined with my research into AI applications 

for robotics, has deepened my understanding of the technical challenges 

and innovations driving the industry forward. 

My weekly presentations on topics like neural networks, computer vision, 

and natural language processing not only expanded my own knowledge 

but also contributed to the company's awareness of AI's potential in 

robotics. The exploration of various Generative AI tools during my 

research highlighted the rapid advancements in AI technology and their 

practical applications in engineering. 

The benchmarking project comparing InUse and WAKU fleet 

management platforms was a motivating project, offering a real-world 

perspective on how engineering decisions intersect with business 

considerations. 

Overall, this internship has been crucial in my development as an 

aspiring engineer. It has equipped me with practical skills and industry 

insights that will be invaluable in my future academic and professional 

work. I'm grateful for the mentorship and hands-on experience provided 

by the team at Sherpa Mobile Robotics, which has significantly 

enhanced my understanding of the exciting and rapidly evolving field of 

AMRs and AI in robotics. 

 


