
University of Bath

Department of Mechanical Engineering

Internship Report

AI in Robotics Internship Report

Elliot Routier

239252454

July – August 2024

Maciej Bednarczyk – Chief of Architectural Software

Sherpa Mobile Robotics

Haguenau, Grand Est, France

September 2024

Acknowledgements
First and foremost, I would like to thank Maciej Bednarczyk for being

such a great mentor at Sherpa Mobile Robotics, he has kindly taken me

in and tracked my progress throughout the internship. His help has been

invaluable and my experience at Sherpa would not have been the same

were it not for Maciej.

I would also like to thank the Research and Development department at

Sherpa for being so welcoming and friendly, I am truly grateful to have

met these people and worked alongside them. The working environment

was so positive, it made going to work in the morning so much more

exciting than it already was.

Finally, I would like to thank the Arthur Clement’s Fund for their financial

support, which made it possible for me to complete this internship.

Without this assistance, I would not have been able to pursue this

valuable opportunity.

Summary
In today’s rapidly evolving industrial landscape, companies are under

constant pressure to stay competitive by improving efficiency and

automating workflows. In their search to automate and streamline

workflows, companies look to new horizons to stand out from their

competition and keep up with market standards. Sherpa Mobile Robotics

focuses on facilitating such processes. Leading innovators in the sector

of Autonomous Mobile Robots (AMRs), Sherpa Mobile Robotics plays a

crucial role in the shift from manually focused sectors to automated

ones. Automating industrial processes and improving operational

efficiency, reducing the need for manual labour has become their

objective. During my internship, I had the opportunity to participate and

contribute in this race to innovate and constantly evolve to stand out

from competition while keeping up with market trends.

Involved in research aimed at innovating current solutions within Sherpa,

I delivered weekly presentations focused on the topic of AI intending to

raise awareness and prospect new technologies.

During my time at Sherpa, I also had the opportunity to discover various

fields within the company. By working with the production team,

speaking with the sales division, collaborating with the R&D department

and interacting with the software engineers I was able to gain a diverse

insight into engineering as a profession.

This internship report will serve as an insight into the different

opportunities I have experienced at Sherpa Mobile Robotics and will also

clarify where and how the field of Artificial Intelligence is applicable to the

sector of AMRs. As the need to innovate is extremely important,

researching and developing new technologies becomes a fundamental

factor to the success of Sherpa Mobile Robotics.

Table of Contents
Acknowledgements ... 2

Summary ... 3

Introduction to Sherpa ... 5

Sherpa-D ... 6

Sherpa-B ... 6

Sherpa-P ... 6

Sherpa-F ... 7

Follow-Me Function ... 7

Learning Objectives .. 8

Discovering Sherpa ... 8

The current state and prospects of AI in the field of robotics .. 10

An Introduction to AI ... 12

Computer Vision .. 22

Natural Language Processing – NLP ... 28

Generative AI ... 30

Fleet Management Platforms ... 33

Final Thoughts .. 36

Introduction to Sherpa
Sherpa Mobile Robotics (SMR) is a robotics company founded in 2020.

Based in Haguenau, France, its CEO, Stephane Fauth, envisioned a

solution that would complement SMR’s current sister enterprise –

NORCAN.

NORCAN, founded in 1987, is a leader in France and among the leaders

in Europe in the field of tailor-made, mechanically assembled solutions

based on aluminium profiles. When Stephane Fauth took over NORCAN

back in 2014 he encountered some of the challenges that industrial

manufacturers are faced with day to day. More specifically, following an

increase in demand for NORCAN’s maintenance chariot, the CEO

imagined a motorised version of the chariot. From this idea, Sherpa

Mobile Robotics was born.

To address the growing need for automation and efficiency in the setting

of industrial manufacturing, this strategic move would allow industrial

manufacturers to enhance their productivity, reduce manual labour and

answer for a gap in the market. Beyond meeting these criteria, Stephane

also envisioned NORCAN to be a primary integrator of the Sherpa range

of robots.

Today, the field has become highly competitive with companies like

Boston Dynamics, Geek+ and Mobile Industrial Robots at the forefront of

SMR’s competition. However, Sherpa still manages to stand out in a

market as competitive as that of industrial AMR’s. With several unique

robots that answer to highly specific scenarios and the “follow-me”

function that remains the intellectual property of Sherpa Mobile Robotics,

the company maintains a strong foothold in the market. The upcoming

section will address these stand-out features.

Sherpa-D
The Sherpa-D is SMR’s latest robot release.

Featuring a singular fork designed to transport

dollies, wheeled pedestals, stacks of bins and

rolling trays, its maximum payload amounts to

a total of 250 kg with a maximum height of 1.2

metres. Weighing 137 kg, this AMR is easily

integrated in solutions for moving stacks of

bins from a point A to a point B.

Sherpa-B
This fully autonomous AMR, specially

designed to improve order

preparation processes, eliminates

unnecessary manual interventions.

Equipped with a LiDAR and flexible

add-ons (possible through NORCAN)

this 75kg robot can lift weights of up

to 200 kg at speeds of 7 km/h. The

Sherpa-B’s main use-case is for any

picking and handling actions thanks

to its top conveyor that can be

adjusted depending on the client’s requirements.

Sherpa-P
The Sherpa-P is designed to transport

pallets and crates of up to 1 200 kg.

Its purpose – interconnecting

production zones with warehouses.

This robot is customizable to meet

client requirements on demand. Its

base can be equipped with multiple

extensions to adapt it to a specific

environment. Weighing just 250 kg, the use case of the Sherpa-P has

been thwarted due to the arrival of the new Sherpa-F…

Sherpa-F
Similar to Sherpa-P, this AMR is

designed to transport pallets and crates.

However, it does not require specific

infrastructure to function, a requirement

that has led Sherpa-P to be fully

replaced by the Sherpa-F. weighing in at

over 200 kg this robot has a weight

capacity of 1200 kg. With no

environment modifications required, its

reliability is also based on its ability to

recognise and pick up pallets even

when they are not aligned.

Follow-Me Function
The “Follow-Me” feature is Sherpa Mobile Robotics’ standout innovation

and remains exclusively their intellectual property. The feature has

provided Sherpa with a significant advantage in the market proving to be

more than just a unique perk but also a factor influencing clients to opt

for a Sherpa robot.

Fundamentally, the Follow-Me function allows a robot to automatically

track and follow the nearest individual without the requirement of

programming any missions. Minimising downtime and eliminating the

need to program specific missions this makes the robot more intuitive to

use and streamlines operations. Whether it’s quickly displacing a pallet

from a point A to a point B under time constraints or helping a robot

adapt to a new warehouse, its applications are vast.

This hands-free solution offers a face paced, dynamic and reliable

approach. Allowing businesses to maximise efficiency and adapt to

quickly changing scenarios, this simple yet versatile solution has made

the “Follow-Me” feature a powerful selling point for Sherpa Mobile

Robotics.

Learning Objectives
Offering insights I had not expected, this experience was truly eye-

opening, allowing me to gain a real-world understanding of how a

company operates and what it means to work as an engineer abroad.

Before starting, I knew my role at Sherpa Mobile Robotics would involve

producing weekly reports on the current state and prospects of AI in the

world of robotics. I was guided by Maciej Bednarczyk, chief of

architectural software at Sherpa, who mentored me throughout the

internship, keeping track of my progress and the work that I was tasked

with.

The primary task – producing weekly reports on the current state and

prospects of AI in the field of robotics – allowed me to delve deep into

the latest technologies in the field of AI and contribute to raising

awareness within the company about AI’s potential in the sector. But the

internship wasn’t just about the research, I was also presented with the

valuable opportunity to experience the balance between personal and

work life. Learning firsthand about the dynamics of a company provided

a holistic experience contributing to my growth from a professional, but

also a personal point of view.

Discovering Sherpa
Before discussing the work that unfolded during my internship at Sherpa,

I was encouraged, upon arrival, to immerse myself within the company

by engaging with as many teams and members as possible. This step

was crucial for me to understand the dynamics of the company and

integrate as the summer intern. During my first few days, I interacted

with a variety of departments including the sales team, R&D engineers,

commercial division, human resources and software engineers. This

exposure to the company was essential to grasp the company’s

atmosphere and to settle in comfortably.

Towards the end of this introductory period, I had the opportunity to meet

the production team, responsible for assembling the robots. They were

very welcoming and friendly; not only did they guide me through the

assembly process, but they entrusted me with assembling a Sherpa-D

myself. Thrilled at the challenge, I was given flexibility by my mentor,

Maciej Bednarczyk, allowing me to focus on this project before engaging

in my weekly AI reports in the field of robotics.

Working alongside Louis, Adam, Thomas and Romain from the

production team was a highly enjoyable experienced. Patient and

pedagogical, they taught me the intricacies of robot assembly and

shared valuable tips and tricks. I spent one week assembling the

mechanical aspect of the robot and another week setting up the

electrical panel. Despite my limited prior knowledge in both areas, I

learned a great deal and thoroughly enjoyed the hands-on experience

that assembling a robot has to offer.

Overall, my time with the production team was both enlightening and

fulfilling. Creating a complex piece of engineering and engaging with a

cheerful and supportive group of people made this experience a

highlight of my internship at Sherpa Mobile Robotics.

The current state and prospects of AI in the field of

robotics
After spending the first couple of weeks exploring different departments

within the company and working with the production team to assemble a

robot from scratch, I was now ready to begin the focus of my internship –

weekly reports on the current state and prospects of AI in the field of

robotics.

Having discussed with my mentor, Maciej Bednarczyk, it was agreed

that instead of producing a traditional, weekly, written report which might

not directly be useful for Sherpa, I would deliver weekly presentations to

the team at SMR. These presentations would be open to anyone curious

to learn more about AI, creating an open source of knowledge for

anyone to access in engaging and active presentations. As such, these

talks would be aimed at raising awareness within the company on the

topic of AI, ensuring everyone had a solid understanding of its current

state and eventually exploring how this rapidly evolving technology could

be practically integrated into Sherpa’s operations.

The following is a structured overview of the weekly work I completed at

Sherpa, excluding the first couple of weeks and the week of August 12 –

August 15:

Elliot Routier
Intern at Sherpa Mobile Robotics
Internship Period: July 1 – August 30
Location: Haguenau, France

Week 3 (July 15 – July 19)

• Main Topic: Introduction to AI

• Goal: Familiarise with basic AI concepts and prepare a presentation.

• Work Done: Researched fundamental AI concepts such as machine learning and
deep learning. Created and delivered a presentation on the introduction to AI.

Week 4 (July 22 – July 26)

• Main Topic: AI Learning Processes

• Goal: Understand different types of AI learning focusing on backpropagation.

• Work Done: Researched AI learning methods in particular learning about
backpropagation. Prepared and delivered a presentation on AI learning processes.

Week 5 (July 29 – August 2)

• Main Topic: Computer Vision

• Goal: Explore computer vision and its applications in robotics.

• Work Done: Studied image recognition and machine vision systems. Created and
delivered a presentation on computer vision in robotics.

Week 6 (August 5 – August 9)

• Main Topic: Natural Language Processing (NLP)

• Goal: Investigate NLP applications in robotics and address the topic of prompt
engineering.

• Work Done: Researched NLP technologies. Delivered a presentation on NLP and
prompt engineering in robotics.

Week 8 (August 19 – August 23)

• Main Topic: AI Solutions in Robotics

• Goal: Prospect various AI solutions for robotics.

• Work Done: Researched AI-driven solutions and case studies in industrial robotics.
Presented findings on AI applications in robotics.

Week 9 (August 26 – August 30)

• Main Topic: Final Recap

• Goal: Summarise all previous topics in a final presentation.

• Work Done: Consolidated all topics covered in the internship. Delivered a final
recap presentation to the company.

Key Presentations:

• Week 1 (July 15 – July 19): Introduction to AI.

• Week 2 (July 22 – July 26): AI Learning Processes.

• Week 3 (July 29 – August 2): Computer Vision.

• Week 4 (August 5 – August 9): Natural Language Processing (NLP).

• Week 5 (August 19 – August 23): AI Solutions in Robotics.

• Week 6 (August 26 – August 30): Final Recap Presentation.

What follows in this technical internship report will focus on detailing the

key findings during my time at Sherpa Mobile Robotics. Working my way

through each week, I will provide technical details on the topics of AI, its

learning processes, Computer Vision, Natural Language Processing and

AI applications in robotics. Since the last week was focused on providing

a summary of the previous weeks, I will not provide a breakdown for this

last week.

An Introduction to AI

Artificial intelligence refers to the development of computer algorithms to

perform tasks that would typically require human intelligence. These

tasks include reasoning, learning, problem solving, understanding

natural language, recognising patterns and making decisions. AI

systems can process huge amounts of data, and its use case is

applicable to various sectors ranging from mobile robotics to healthcare.

Today, the term artificial intelligence can be misleading and therefore it is

important to understand what that means on a more basic level.

Data

Essentially, Artificial Intelligence refers to the ability of a machine to think

on its own. In this introduction of AI and for the rest of the report I will be

focusing mainly on a branch of AI known as Machine Learning. Machine

Learning is a subset of AI that allows systems to learn automatically from

data, hence the name “Machine Learning”. Acquiring this data is the

challenging aspect of Machine Learning – the quality of the AI model

depends on the quality of the data. Think of it like feeding a child – if the

child is to grow strong and healthy, he will need the best nutrition

available. Similarly, a Machine Learning model will only perform well if it

is fed with reliable, well-structured data.

Another challenging aspect of machine learning –

classifying and labelling the data gathered. Once

properly labelled, this data becomes the foundation

for training an AI model enabling it to learn improve

and eventually, think. Ever had Google ask you to

identify objects, like bicycles from a set of images?

That’s Google collecting and classifying data which

is then used to train their machine learning models

like Gemini for instance.

To put in perspective the shear volume of data that an AI can consume,

imagine reading through a collection of 500 000 books. Assuming a

reading speed of 50-60 pages per hour and that each book is 300 pages

long, it would take an average human about 1 000 years to finish these

500 000 books whereas an AI could read through this information in the

span of minutes.

Neural Networks

The very foundation of a machine

learning system relies on a neural

network. A neural network

consists of two principal

components:

• Neurons

• Neural Links

A neural network is designed to process input data and produce an

output, which can be used for making predictions or providing answers.

Here is a breakdown of how it works:

1. Neural Links: Information flows through the network from the

input to the output layer. This data is propagated through the

network by neural links also known as weights or coefficients,

which determine the importance of the information that is being

transferred between neurons.

2. Neurons: each neuron receives information from the neural links,

processes it using an activation function, and passes it to the next

layer of neurons for this information to be processed again.

3. Network Structure:

▪ Input Layer: the raw data enters the network

▪ Hidden Layers: layers between the input and output

layer responsible for recognising patterns, hierarchal

learning, extracting features and introducing non-

linearity to a model.

▪ Output Layer: final prediction based on the processed

information

A Neural network processes data through its interconnected layers of

neurons where each layer contributes to pattern recognition and feature

extraction. The propagation of this information ultimately leads to the

generation of an output. The structure of a neural network is what allows

a machine learning to process data as fast as it does.

The Learning Process

The learning process is arguably one of the most technical aspects of

machine learning. While it involves many complex details, especially in

the underlying mathematics, I will focus on the key steps to give a clear

overview without diving into every detail.

This phase introduces several concepts that have not yet been

mentioned. They are not necessary to understand the functioning of

neural networks, but they are crucial in understanding how they learn.

This diagram outlines the different steps involved in this process. My aim

is to guide you along this diagram, step by step, to provide a more

holistic understanding. During my presentation to the team this diagram

was also used as visual support to guide my audience through the

process.

Activation Functions

Having touched very briefly on activation functions when introducing the

concept of neural networks, I will now expand on this topic. Activation

functions process the data passed through the neural network to

generate an output from this information. Essentially the function applies

a weighted sum to the input data and its respective weights (or

coefficients as I like to call them because they determine the importance

of the propagated information).

From the diagram above, the blue circles labelled h1, h2, h3, h4 and h5

represent neurons from a hidden layer. Each neuron contains a value

(denoted by the letter “v”) ranging from 1 to 0 which is transmitted along

a neural link. Each neural link holds a weight (denoted by the letter “w”).

A weighted sum of the neurons, and their respective weight, produces

an output – in this case -0.53. This activation function is applied to every

single neuron in a neural network and allows for the processing and

propagation of information within this system.

Peeking inside a single neuron, we see how the input data is averaged

using a weighted sum of values and weights to produce an output that is

transmitted to the next layer of neurons.

The final step involved in activation functions is the activation itself.

Many activations may be used when creating a neural network, to list a

few: ReLU, Sigmoid, Leaky ReLU, Tanh (hyperbolic tangent) and

Softamx. Each have their use case depending on the outcome required.

For the sake of simplicity, I will only explain the activation process of

ReLU. The activation aspect of activation functions allows the weighted

sum to be propagated through to the next layer (or not). The following

steps describe how ReLU translates the weighted sum as an output:

• If the weighted sum is x > 0, then the output is x

• If the weighted sum is x = 0, then the output is 0

• If the weighted sum is x < 0, then the output is 0

The ReLU function allows the elimination of all negative, non-zero

entries into the neural network such that only relevant information is

processed by the network. The ReLU function contains a flaw which can

be resolved by using different activation functions, such as the ones

mentioned earlier.

Bias
You may have noticed in the diagrams above, additional neurons

labelled “bias”. The bias helps adjust the weighted sum to influence the

input for the next neuron layer. Unlike other neurons, the bias isn’t linked

to individual neurons but applies to the entire layer. This added

parameter increases the complexity of neural networks, helping fine-tune

the outputs.

Loss Functions

Referring to the learning process diagram from mentioned earlier,

after a prediction or an output has been generated, a loss function

compares the values generated by the neural network with the expected

or true value. This comparison results in a loss score, which indicate

how the AI model’s predictions align with expected outcomes. The loss

score is later used in the learning process to guide the fine-tuning of

parameters to improve its performance.

Similar to activation functions, there are different types of loss functions,

and each have their ups and downs. For demonstration purposes we will

look at two common loss functions:

• Mean Squared Error (MSE)

• Categorical Cross Entropy (CCE)

The Mean Square Error is typically used in regression problems. It

calculates the average squared difference between predicted and true

values. The smaller the score, the better the model is performing.

The Categorical Cross Entropy is used for classification tasks. It

measures the difference between the predicted probability distribution

and actual class distribution. This score is calculating using probabilities

and logarithmic functions, making it more complex than the MSE

method.

Let’s have a look at some examples.

In this example, a sine wave is generated. The sine wave is represented

by an oscillating blue line that corresponds to the values we expected

our model to predict. The predicted values of the model are shown as

red dots following the trend of the sine wave. While the predicted values

are close to the expected values, they do not match exactly. On the

following page, the Mean Squared Error is calculated using the

difference of two squares.

By calculating the difference of two squares, an average loss score is

determined. In this case, the Mean Squared Error is 0.0090. The next

graph uses Categorical Cross Entropy for classification purposes.

Imagine an AI model that predicts whether an image is that of an apple

or not. The dark orange bars from represent whether the image of an

apple was provided to the machine or not and the light orange bars

show the machine’s predicted probability of the image being an apple.

The following graph shows the loss score calculated using Categorical

Cross Entropy for the apple image recognition.

Essentially, the CCE score is calculated using probabilities and

logarithmic functions to assess the accuracy of the model’s predictions.

Gradient and Backpropagation

Until now we have investigated neural networks use activation and loss

functions. However, we haven’t seen anything on the learning aspect of

machine learning. This is where gradients and backpropagations come

into play. These processes work hand in hand to help the model adjust

its parameters (weights and biases) to improve performance.

After the loss score has been calculated, the model’s output is

backpropagated through the network, from the output to the input.

Backpropagation determines how each neural link and bias contribute to

the loss score calculated.

Once the contribution to the loss score for each parameter has been

determined, a gradient must be calculated. A gradient indicates the

direction and magnitude of changes required to reduce the loss score.

To illustrate, imagine a hiker, climbing down a mountain when it is dark.

To reach the bottom of the mountain, the hiker carefully places one foot

in front of the other making sure that each step taken leads downhill.

Similarly, in machine learning, gradients guide the parameters (weights

and biases) to reduce the loss score.

We can think of this gradient descent as 3-dimensional space where its

y-axis represents the loss score, and the x and z-axes represent the

parameters of the neural network which are weight and bias. A neural

network could consist of millions of these parameters, so it is impossible

to visualise or even understand how this gradient descent occurs.

The gradient is calculated using a vector of partial differential equations

with respect to each parameter (weights and biases). These gradients

are applied during backpropagation where the information is reversed

through the neural network.

Following the gradient calculation from the backpropagation of

information, weights and biases are updated to improve the model. This

is a cyclical process and will iterate until the loss score has reached a

minimum or until the model has reached a suitable level of performance.

To summarise the learning process of machine learning, we can refer to

our original diagram.

The steps involved include:

• Forward propagation – the input data passes through the network,

producing an output

• Loss function – the output is compared to the expected value and

a loss score is calculated to measure the model’s performance

• Backpropagation – the output is sent back through the network to

measure each parameters contribution to the loss score

• Gradient – they are calculated to minimise the model’s loss score

by optimising weights and biases

Computer Vision

Having covered some of the theory behind Artificial Intelligence, and

more specifically behind machine learning, we can start looking at some

of the key AI solutions in the world of robotics. In this section of the

report, I will focus on a technology that is extremely popular and utilised

in the world of AI, computer vision. Computer vision allows machines to

see. But what does this mean?

Today, we could program a computer to recognise a dog from a cat by

teaching it key feline features such as whiskers, a long tail, pointy ears…

and so on. However, identifying the difference between a cat and a

jaguar is far more difficult, which is why computer vision is highly

valuable for recognition and classification tasks.

In this section we will look at all the processes involved in computer

vision:

• Data

• Convolution

• Pooling

• Stacking

• Flattening

Data

As mentioned at the start of this report, data remains a long and tedious

process of machine learning. Acquiring clean and structured data is

fundamental to obtain the best quality model. Not only selecting the data

but also labelling it plays a key role in the process. The same applies for

computer vision, the quality of the data is directly proportional to the

quality of the model.

Beyond the acquisition of quality data and thorough labelling, an image

must be converted from a coloured one to a grayscale one – in other

words, a grayscale conversion.

This is the image of my cat undergoing a

grayscale conversion. A grayscale conversion

allows for the reduction of information – it makes

it easier to process the information of an RGB

image (coloured). An RGB image contains

pigments of Green, Red and Blue in every pixel

of an image. A grayscale image contains only an

intensity of light for each pixel. As such, this

conversion allows for the initial input data to be

reduced by a threefold, making it a lot easier and

faster for the network to process.

Convolution

After converting an image to grayscale, applying a convolution layer can

further reduce the input data we provide to a neural network and help

extract key image features. A convolution layer is a filter, applied to a

grayscale image, allowing the neural network to extract key features

from the image.

This filter is in the format of a 3x3 matrix of pixels, known as a kernel.

The kernel scans the image, performing a weighted sum between the

kernel values and the pixel values. To illustrate this process, the

following image shows a kernel applying a weighted sum to

corresponding pixels of an image:

From this 8x8 pixel image, the top left portion consisting of 3x3 pixels

has been translated to a single pixel by use of this weighted sum. The

kernel then moves across the image, applying the filter until the entire

image is processed. The filtered result is known as a feature map.

Different kernels produce different feature maps. The kernel values

depend on the desired extracted features of an image such as edges,

contours or brightness.

Pooling

Pooling further reduces the amount of data processed by the neural

network while preserving essential features from the feature maps. This

step makes the model more efficient by reducing unnecessary

information while maintaining key characteristics of the image.

There are two types of pooling:

• Max Pooling

• Average Pooling

Like convolution filters, pooling involves scanning an RxC matrix to an

image and either perform an average of the pixels within this matrix

(average pooling), or by selecting the most significant pixel within this

region (max pooling).

Max Pooling: imagine doing a helicopter tour over New York. The

buildings that stand out are the tallest and most prominent ones. Like the

skyline of a mega city, max pooling selects the most dominant pixels

within a select region.

Average Pooling: an averaging operation ensures that each pixel is

accounted for in the process.

Stacking

Applying convolution layers to the initial image is sometimes not

sufficient to capture the important features of an image. To handle more

complex feature extraction, multiple convolution layers can be stacked

on top of each other. In doing so, specific characteristics may be

extracted from images that have been already filtered. Here is an

example of a grayscale image of a cat whose contour is being extracted:

The feature map is now filtered to extract more complex features of this

image:

Through the process of stacking, we can obtain very useful insights into

the image with very small amounts of data.

Flattening

Assuming we have applied multiple convolution layers to the image of

our cat, such that we obtain the following feature maps:

The top left feature map allows to accentuate 3D aspects of the image,

the top right image is the contour filter, the bottom left image allows to

blur intensity contrasts, while the last picture aims to highlight bright

features.

The flattening process converts the data format such that it can be

managed by the neural network.

Currently the data exists as a 3D vector known as a tensor. These 3

vectors include height (vertical pixels of a feature map), width (horizontal

pixels of a feature map) and the number of feature maps (4 in this case).

Flattening will ensure that this data is translated to a 1D vector and not a

3D one.

The flattening process is very simple and consists of multiplying the

vertical pixels with the horizontal ones and multiplying them by the

number of feature maps.

The image of our cat is a 2,880 x 1,800 picture (excluding the pooling,

grayscaling and filtering that reduce the number of pixels an image

contains) and we have obtained 4 of these feature maps. Multiplying

these out we acquire a total of 20,736,000 individual pixels that will be

used as input data to the neural network.

Once the data is in the correct 1D vector format, that the data size has

been reduced and that we have obtained our feature maps, the

information can now be processed by the neural network.

Natural Language Processing – NLP

Natural Language Processing, or NLP, is a branch of Artificial

Intelligence that allows machines to interpret, process and respond to

human language. In the world of robotics, NLPs hold true potential to

understand and execute tasks based on natural language commands,

creating a more intuitive and user-friendly interface for customers using

AMRs. This next section explores how NLPs function, what are its

applications in the world of robotics and some of the challenges it faces

in the industry.

The following is a comprehensive list of steps involved in NLP:

• Speech Recognition

• Language Parsing

• Semantic Understanding

• Command Execution

Speech Recognition

Although not a necessary step as some natural language can be written

and not spoken, most NLP equipped robots use speech recognition

technologies like Google Speech-To-Text or Microsoft Azure Speech

Services. These technologies use a deep learning models known as

Recurrent Neural Networks (RNNs) or Transformers to process audio

data in real time by analysing frequencies and amplitudes of sound

waves. These deep learning models can account for accents, variations

in tone, background noise and even speaker emotions.

Language Parsing

Once the speech has been converted to text, language parsing breaks

the text down into a structured layout. There are two types of

dependency parsing that order the text into a structured layout. These

are:

• Syntactic Parsing

• Dependency Parsing

Syntactic parsing analyses grammatical structures whereas dependency

parsing analyses relations between words in a sentence.

Syntactic parsing identifies the role each word plays in a sentence. For

example, in “Pick up the box”, the word “Pick” is identified as the verb,

and the word “box” is identified as the object of the verb. As such,

syntactic parsing is responsible for determining the action and target of a

mission. Dependency parsing creates a dependency tree where each

word is linked to others based on how they depend on each other for

meaning. For example, in “Put the red book on that table”, the

dependency tree would relate “red” to “book” and map “on that table” to

“Put” to indicate where the action should take place.

Semantic Understanding

Once the structure of grammar and dependency is understood, the robot

needs to comprehend the meaning behind the words. Semantic

understanding enables robots to understand what is being asked of

them beyond the literal meaning of words. This step involves Named

Entity Recognition (NER), Semantic Role Labelling (SRL) and Word

Sense Disambiguation (WSD).

• NER – allows AMRs to identify specific names, locations or

objects. For instance, in “Bring me the book from the shelf”, the

robot associates the “book” being on the “shelf”

• SRL – assigns roles to different parts of a sentence to understand

relationships between entities and actions. For example, in “John

gave Mary the book”, Semantic Role Labelling identifies “John” as

the giver and “Mary” as the receiver

• WSD – use of contextual cues to eliminate ambiguity in human

language. For example, a “bank” can mean the side of a river or a

financial institution.

Command Execution

The command execution phase of NLPs involves translating the

meaning of the command into a physical action using its actuators. The

process is highly dependant on motion planning, object manipulation

and multi-step command algorithms.

• Motion Planning – for mobile robots, motion planning involves

determining the most efficient path from one point to another while

avoiding obstacles.

• Object Manipulation – for robots equipped with arms for example,

they must understand how to handle objects.

• Multi-Step Commands – robots need to perform multiple tasks

sometimes such as “got to aisle A42”, then “pick up pallet 445” and

“drop it off in zone 5”. These instructions involve task

decomposition before being able to execute.

Overall, NLP allows for the translation of natural language from an

unstructured to a structured environment. In a more realistic example, if

we ask a robot “Add eggs and milk to my shopping list”, NLP algorithms

will deconstruct this phrase and rearrange it into the following structured

architecture “<Shopping list><item>eggs</><item>milk</></>” by using

methods such as language parsing and semantic understanding.

NLP in robotics is a sophisticated and multi-layered process that

combines speech recognition, language parsing, semantic

understanding, and command execution, all enhanced by continuous

learning from interactions. This integration allows robots to engage in

more natural, intuitive, and human-like interactions, improving their

ability to understand and act on verbal commands across various

industries and applications.

Generative AI

During my internship, the research I led on artificial intelligence was

strongly supported by generative AI. Most of the work was carried out

using these tools, with occasional adjustments made by me. After

discussing with my mentor, we decided that I would evaluate various

GenAI platforms. This approach allowed me to give detailed feedback on

each tool's performance and provide insights on which one was most

effective. I evaluated them based on key criteria: natural language

processing (NLP), programming capabilities, operability, user

experience, and creativity.

To get a thorough understanding of each tool, I spent roughly a week

working exclusively with each AI platform, examining its strengths and

limitations. In total, I assessed four different GenAIs:

• ChatGPT

• Microsoft Copilot

• Gemini

• Claude 3.5

ChatGPT

OpenAI’s ChatGPT is currently the leader in the generative AI space,

and for good reason. It was by far my favourite tool to work with as it

excelled in all the areas I evaluated:

• NLP: ChatGPT demonstrates an exceptional ability to

understand and generate natural language, though it

sometimes leans toward overly formal and verbose responses.

• Programming: It’s highly versatile, often assisting with code

generation and debugging. I used it extensively in my first-year

projects, although it required multiple iterations to reach the

desired result.

• Operability: It’s incredibly reliable—I've never faced server

downtime. While I only used the free version, which met all my

needs, the paid version at $20 per month is available for

enhanced features.

• User Experience: Very straightforward interface with a useful

chat history and memory features that store information across

conversations for future use.

• Creativity: ChatGPT is remarkably creative, consistently offering

original ideas and solutions.

Microsoft Copilot

• NLP: Copilot’s natural language understanding is somewhat

basic and occasionally struggles with nuanced input.

• Programming: Its programming capabilities are underwhelming,

and I wouldn’t rely on it for serious coding tasks.

• Operability: This is where Copilot shines. Its seamless

integration with the Microsoft environment makes it extremely

accessible. Similar to Gemini’s connection with Google, this is a

standout feature.

• User Experience: Simple and intuitive, with easy access to

other Microsoft apps. However, the lack of conversation history

is a drawback compared to ChatGPT.

• Creativity: Copilot’s creative abilities are bolstered by its access

to DALL·E 3, providing up to 15 free image generations per day.

• Additional Features: The real game-changer is Copilot’s ability

to fetch live data from the web, eliminating the need for external

searches. This feature is absent in ChatGPT, Claude 3.5, and

Gemini, making Copilot unique in this aspect.

Gemini

• NLP: Better than Copilot in language processing, but still not on

par with ChatGPT.

• Programming: Its programming abilities are solid and

surprisingly complementary with ChatGPT. Together, they often

solve problems the other struggles with.

• Operability: Accessible and integrated into the Google

ecosystem, though not as tightly as Copilot with Microsoft.

• User Experience: Simple to use, though it doesn’t offer much

beyond the basics.

• Creativity: It gets the job done, being reasonably creative in

comparison to other GenAIs.

In summary, while Gemini is a high-performing AI, it lacks a standout

feature. It feels like a less robust version of ChatGPT, offering nothing

particularly unique. Unlike Copilot, which excels with live web access,

Gemini doesn’t provide anything groundbreaking.

Claude 3.5

• NLP: Claude 3.5 surpasses ChatGPT in natural language

generation, producing answers that feel more conversational

and human-like.

• Programming: Claude excels in coding, outperforming both

ChatGPT and Gemini. I especially enjoyed using it to generate

games and animations, which were valuable during my weekly

presentations.

• Operability: Unfortunately, this is its weakest point. The servers

are often overloaded, making it difficult to access. Initially, when

it launched in mid-2024, I had frequent access, but the current

free version is limited to only five messages per day. I didn’t get

the chance to try the paid version, but I suspect it might offer

better server access.

• User Experience: The layout and interface are user-friendly,

though the limited usage is frustrating.

• Creativity: Claude 3.5 is one of the most creative AI tools I’ve

used, regularly offering insightful and imaginative ideas.

Over the course of my internship, I became deeply familiar with these

generative AI tools and continue to use them today. Each has its

strengths, and I now employ them for different tasks: Copilot for web-

based research, Claude when it’s available, ChatGPT as a fallback when

Claude is inaccessible, and Gemini, though rarely, as I wait to see if

Google enhances its capabilities with live web access. I strongly

recommend leveraging this comparison to make the most out of these

tools in your own projects.

Fleet Management Platforms

The final project that I led at Sherpa was a benchmarking between 2

platforms that focused on robot fleet management. At Sherpa, the

current fleet management we use is called InUse. InUse is an IoT that

allows for the design of a web app where data can be retrieved to

visualise information from your fleet of robots.

During some of my research in the beginning of my internship, I had

come across another fleet management platform named WAKU that

implemented AI solutions. When presenting about WAKU to some team

members from SMR, they pointed out to me that this was very similar to

InUse and that it could be a great idea for me to carry out an evaluation

to compare these 2 platforms.

And so, I met the CEO of WAKU and got in touch with people from

Sherpa that take care of the InUse contract to get a better idea of both

platforms. This following section will aim to highlight the pros and cons of

each platform, why we should use one over the other and more

importantly what are their differences.

InUse
InUse is a French company based in Paris that specialises in the

Internet of Things (IoT). IoT refers to a network of physical devices

embedded with sensors and software, enabling them to collect and

exchange data over the internet. InUse itself isn’t specifically a fleet

management platform but rather provides the tools necessary to build

one. This gives Sherpa, a high degree of flexibility in customising the

platform according to our needs.

The web app that Sherpa developed with InUse allows us to access Key

Performance Indicators (KPIs) that are crucial for meeting Service Level

Agreements (SLA) and identifying potential robot errors. It also provides

real-time insights into robot operations, such as mission durations and

daily task details.

While InUse is primarily used for data visualisation in our current setup,

it’s capable of much more. After speaking with Laurent Couillard, the

CEO of InUse, I learned that the platform could integrate third-party

services, manage robot maintenance, handle ticketing systems, oversee

inventory and spare parts, plan tasks, and even include AI-driven

chatbots. This flexibility highlights the potential of InUse beyond just

visualising KPIs.

WAKU
WAKU is a German company founded in 2019, located near Sherpa in

the Alsace region. The founders, Leo KaBner, Victor Splittgerber,

Alexander Bresk, Florian Purchess, and Sander Nijssen created WAKU

Care, a software solution designed for managing the maintenance and

after-sales support of Autonomous Mobile Robots (AMRs). The main

goal of WAKU Care is to optimize robot operations and help clients

achieve a high return on investment (ROI) by improving how mobile

robots are integrated into logistics processes.

Unlike InUse, WAKU provides a more focused, pre-built platform

specifically tailored for AMR maintenance and data retrieval. While the

app is very efficient and user-friendly, it lacks the customisability of

InUse. Every client gets the same interface with only minor differences

based on contract details. This uniformity simplifies things but may not

suit companies with highly specific or evolving needs.

Comparison
The web app Sherpa developed with InUse is functional but still in a

rough state, requiring further time and investment to reach its full

potential. In contrast, WAKU’s app is simpler, more intuitive, and highly

polished because it's designed specifically for the AMR industry.

However, WAKU sacrifices customisability, something InUse offers in

abundance.

When comparing the AI capabilities of these platforms, they are both on

similar paths. Both InUse and WAKU are in the beta phase of integrating

AI-driven chatbots designed to handle ticketing issues. These chatbots

will draw from historical data and internal documentation to resolve

common problems without needing technician intervention, saving time

for more complex tasks.

In terms of pricing, InUse is the more expensive option, but this reflects

the broader range of services it offers. Over a 10-year period and for the

connection of 1,500 robots, InUse costs around €300,000, while WAKU’s

subscription is priced at €156,000. This pricing difference highlights the

trade-off between flexibility and cost.

Conclusion
In summary, comparing InUse and WAKU is challenging because they

cater to different aspects of fleet management. InUse offers a highly

customizable platform focused on IoT and data visualization, allowing

companies like Sherpa to build a system tailored to their specific needs.

On the other hand, WAKU delivers a straightforward, ready-to-use

platform designed for AMR maintenance. It’s cheaper, more user-

friendly, and highly specialised but lacks the flexibility of InUse.

Switching from InUse to WAKU would involve a period of adaptation, as

Sherpa’s team would need to get familiar with a new system. However,

WAKU is specifically designed for AMR manufacturers, which could offer

advantages in streamlining operations. While InUse excels in data

visualisation and customisation, WAKU offers a more specialised and

affordable solution for Sherpa’s AMR fleet management and

maintenance needs.

Final Thoughts

As an engineering student, my internship at Sherpa Mobile Robotics has

been an eye-opening experience, bridging the gap between theoretical

knowledge and practical application in the field of Autonomous Mobile

Robots (AMRs).

The hands-on experience of assembling a Sherpa-D robot provided

invaluable insights into mechanical and electrical assembling of AMRs.

This practical exposure, combined with my research into AI applications

for robotics, has deepened my understanding of the technical challenges

and innovations driving the industry forward.

My weekly presentations on topics like neural networks, computer vision,

and natural language processing not only expanded my own knowledge

but also contributed to the company's awareness of AI's potential in

robotics. The exploration of various Generative AI tools during my

research highlighted the rapid advancements in AI technology and their

practical applications in engineering.

The benchmarking project comparing InUse and WAKU fleet

management platforms was a motivating project, offering a real-world

perspective on how engineering decisions intersect with business

considerations.

Overall, this internship has been crucial in my development as an

aspiring engineer. It has equipped me with practical skills and industry

insights that will be invaluable in my future academic and professional

work. I'm grateful for the mentorship and hands-on experience provided

by the team at Sherpa Mobile Robotics, which has significantly

enhanced my understanding of the exciting and rapidly evolving field of

AMRs and AI in robotics.

